Explain resolution of vectors. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In figure (a), $\vec{A}$ and $\vec{B}$ vectors are coplanar and non-parallel.

$\overrightarrow{\mathrm{R}}$ is to be resolved in $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$

Suppose, $\overrightarrow{O Q}$ represent $\vec{R}$

In figure (b), draw a line parallel to $\vec{A}$ from $O$ and draw another line parallel to $\vec{B}$ passes through Q. Both lines intersect at P.

As per triangle method for vector addition,

$\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}$

Here, $\overrightarrow{\mathrm{OP}} \| \overrightarrow{\mathrm{A}} \quad \therefore \overrightarrow{\mathrm{OP}}=\lambda \overrightarrow{\mathrm{A}}$

and $\overrightarrow{\mathrm{PQ}} \| \overrightarrow{\mathrm{B}} \quad \therefore \overrightarrow{\mathrm{PQ}}=\mu \overrightarrow{\mathrm{B}}$

(Here, $\lambda$ and $\mu$ are scaler values)

$\therefore \overrightarrow{\mathrm{R}}=\lambda \overrightarrow{\mathrm{A}}+\mu \overrightarrow{\mathrm{B}}$

OR

$\overrightarrow{\mathrm{R}}=($ Component of $\overrightarrow{\mathrm{R}}$ in direction of $\overrightarrow{\mathrm{A}})+($ Component of $\overrightarrow{\mathrm{R}}$ in direction of $\overrightarrow{\mathrm{B}})$

885-s67

Similar Questions

Given vector $\overrightarrow A = 2\hat i + 3\hat j, $ the angle between $\overrightarrow A $and $y-$axis is

The angles which the vector $A =3 \hat{ i }+6 \hat{ j }+2 \hat{ k }$ makes with the coordinate axes are

A particle starting from the origin $(0,0)$ moves in a straight line in the $(x, y)$ plane. Its coordinates at a later time are $(\sqrt 3,3)$ . The path of the particle makes with the $x -$ axis an angle of  ....... $^o$

Three forces acting on a body are shown in the figure. To have the resultant force only along the $y-$ direction, the magnitude of the minimum additional force needed is  ........... $N$

  • [AIPMT 2008]

Two vectors of magnitude $3$ & $4$ have resultant which make angle $\alpha$ & $\beta$ respectively with them $\{given\, \alpha + \beta \neq 90^o\}$